lwogowwn_

- . ik

NRL Report 7847

On the Need for Fewer Restrictions
in Changing Compile-Time Environments

DAvVID L.. PARNAS

Information Systems Staff
- Communication Sciences Division

and

Technische Hochscule Darmstadt, Darmstadt, West Germany

JoHN E. SHORE
Information Systems Staff
Communication Sciences Division
W. DaviD ELLIOTT

Information Processing Systems Branch
Communication Sciences Division

January 10, 1975

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited. _:DD(’ -4

e p———— 3

Hi

[
t

RE

i

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFOGE CoMP BTG PORM
1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
NRL Report 7847
4. TITLE (and Subtjile) S, TYPE QF REPORT & PERIOD COVERED
ON THE NEED FOR FEWER RESTRICTIONS IN An interim report on a

CHANGING COMPILE-TIME ENVIRONMENTS

E. PERFORMING ORG. REPQRT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s}
David L. Parnas

John K, Shore
W. David Elliott

9. FERFORMING ORGANIZATION RAME AND ADDRESS 10. igggF‘(&AwOEHLKEﬂerTT'NpUmOBJggJ' TASK
Naval Research Laboratory B02-18-(XF21-241-021-K211);
Washington, D.C. 20375 B02-15-(RF-21-222-401-43586)

11, CONTROLLING QFFICE NAME ANO ADDRESS 12. REPORT DATE
Department of the Navy January 10, 1975
Office of Naval Research 13, NfadEER OF PAGES

Arlington, Va. 22217

14, MONITORING AGENCY NAME & ADDRESS({! diflarent from Controlling Qtfice)

5. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if diffarent from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS {Continue on roverse afde If naceasary and identify by block numbar)
Compilers
Compiler environments
Macros
Programming Languages

20. ABSTRACT (Continua on reverss side if necessary and identity by block number)

During the compilation of a statement, compilers for current programming languages enforce

rigid rest:rictions on changes in the set of associations between names and declarations, that is, on
changes in the compile-time environment of the statement.

ment. These restrictions inhibit the writing off
well-structureq, modular programs, because such programs tend to require frequent switching be-
tween the environments associated with different modules. With current compilers, arbitrary

switching of environments must be handled by means of macros at compile time or deferred until
run time.
Continued

DD ,55R%: 1473 EDiTion oF 1 NOV 68 IS OBSOLETE
5/N 0102-014- 6601

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entared)

LELURITY CLASSIFICATION OF THIS PAGEfWhen Data Entered)
Conventlonal macros are gifficult to use I situations where 1T 1s desiranie that the macro wriver

and the macro user be ignorant aboui each other’s programs. When deferred until run time,
frequent switching of environments becomes costly owing 1o the overhead associated with subrout
tine calls. In vrder to encourage the compartmentalization of program information and at the
same time to allow efficlent code generation, we propose the relaxation of present resirictions on
changes in the compile-time environment. Specifically, we propose that a group of declarations
can be defined as an environment and that arbitrary pieces of program text can state within whici
environment they are to be compiled, With such a mechanism, program text can be intermixed
by means of macros withoul having to make the relevant declarations global or having to repeat
the declarations in places other than the environment’s definition.

i

SECURITY CLASSIFICATION OF THiS PAGE{When Date Eateesd)

CONTENTS

1. INTRODUCTION AND MOTIVATION.

1.1 Ignorant Programming
1.2 Impracticality of Subroutines

1.3 Macros

4. ENVIRONMENT CHANGES AND MODULAR PROGRAMMING . .

5. AN ENVIRONMENT CHANGING FACILITY

6. ON RESTRICTING ACCESS

8. AN ILLUSTRATIVE EXAMPLE

9. AN IMPORTANT UNSOLVED PROBLEM

iii

2

ON THE NEED FOR FEWER RESTRICTIONS IN CHANGING
COMPILE-TIME ENVIRONMENTS

1. INTRODUCTION AND MOTIVATION

To encourage the compartmentalization of information and at the same time to al-
low efficient code generation, we propose the relaxation of present restrictions on changes
in the compile-time environment. The proposal is an attempt to make the implementa-
tion of the program organization and specification techniques described in Refs. 1,2, and
3 practical. In contrast to other work on languages for structured programming, we do
not address mechanisms for using this feature to implement any particular type of ab-
straction (e.g. abstract data types). Our concern is only with returning to the program-
mer a capability he needs to write well-structured programs. Other mechanisms are left
for higher levels.

1.1 Ignorant Programming

The ease of integrating and changing the program described in Ref. 1 was achieved
primarily by dividing the task into work assignments (modules) using the “information
hiding principle’” (Ref. 2). The programmers assigned to any given work assignment must
be able to write, test, and improve their programs without any knowledge of the other
programs in the system beyond that given by the specifications of those programs (Ref. 3).

1.2 Impracticality of Subroutines

The implementation techniques used for the experiment described in Ref. 1 are not
generally suitable for the production of efficient programs. Each module in that experi-
ment was implemented as a collection of Fortran subprograms and all transfers of infor-
mation and control between modules made use of the subroutine call mechanism. When
a program has been decomposed into modules in accordance with strict criteria for the
compartmentalization of information, control at run time remains within a module for
relatively brief periods of time. Under these conditions, the time spent in executing call
and return sequences may be much higher than the remaining processing time. Further-
more, opportunities for optimization may be lost. Because information kept separate at
write time is needed together at code generation time and at run time, compartmentaliza-
tion offers advantages at write time, but potential disadvantages later.

1.3 Macros

When the execution time of the subroutine body is shorter than that of the subrou-
tine call, a standard technique used is to implement the procedure as a macro that inserts

Note: Manuscript submitted November 14, 1974.

PARNAS, SHORE, AND ELLIOTT

the text of the body where the call would have appeared. After invoking a macro, the

(‘nmm]pr rosumes itg prnnncmng at the hocnnnlna‘ of the ingerted toxt 1nef ag if a macro

;;;;;;; =) AARANA W

had never been involved. Owing to poss1ble conflicting assumptions about the environment,
conventional macros are difficult to use in situations where it is desirable that the macro
writer and the macro user be ignorant about each other’s programs.

2. COMPILE-TIME ENVIRONMENT

To compile a given statement, compilers make use of associations between names and
declarations. The names refer to variables and operators, whereas the declarations, which
may be built in, refer to attributes and define data structures and procedures. We refer

10 bﬂebb‘ dbbUle.lalUIlb as LHE Lumpue-ume t!llVllUlllIl!;'[ll.- UJ. LHE bbdbemeﬂb

The restrictions on the way that environments may change as one progresses through
program text are quite strong in all compiler languages known to us. In Fortran, the
environment is fixed for a compilation unit (program or subprogram). In Algol-like lan-
guages, one may augment an environment by adding new associations, which may suppress
old ones, and later remove them by terminating the scope of their declaration, which may
uncover old ones, However, since the environment changes as the program text is pro-
cessed sequentially, one may not reenter an environment that has been previously exited.

YVrnwmichlan Adanlowadl Inlninly newa st oanacos 3 ' PN memty mbadoceneed dlnd [T
vallavlicoy uccuviaicu lll a UIOCK d4Ic llUb AaCTe’sime lll ally dLaiCiliTviii ulak dpptd.lb arer bl.“':

end of that block in the text.

3. RUN-TIME ENVIRONMENT

The run-time environment of a program is defined by the set of associations between

drogs narte nf ingtructiong nnr’] nhvmnnl momnrv lacatinne The environment is dofined
Ay v y AAANSALRAWSA J AN WA VILIR Lo T AANFLARALRNALL Y LE LAWY IV WY L L Y

by the address computation algorxthm the contents of any addressmg registers, and the

_ 8 ALl .

tents of those memory locations that may be used in the auuress computamon process.

When we examine the way that the run-time environment of a compiled program may
change during execution, we find none of the restrictions mentioned in the previous sec-
tion. Changes in environment are effected by changing the contents of the registers and
tables; there are almost no restrictions on such changes.

4. ENVIRONMENT CHANGES AND MODULAR PROGRAMMING

When modules attempt to hide design decisions from each other, the compile-time
environments of separate modules are disjoint. Programs from one module do not include
references to data structures or operators that are defined inside another. A transfer of
control from one module to another involves a change of environment.

When the transfer between environments is made by a procedure or subroutine call,
the environment change is made at run time, when there are no major restrictions on the

[\~

NRL REPORT 7847

cnvironment changes that may occur. Standard procedure call mechanisms make time-
and space-consuming environment changes by saving and later restoring the contents of
registers and memory locations used in address caleulations and certain general registers
as well. A compiler that could generate code while making only the necessary changes
would require detailed knowledge of both programs simultaneously and would be quite
difficult to construct. Even with such a compiler, one would forego opportunities for
optimization.

When macros are used as the transfer mechanisms between modules, the compiler can
know the characteristics of both the calling and the called code, using only local knowl-
edge about the section of program being compiled. The use of macros can result in rel-
atively efficient transfers between modules because the macro writer can take advantage
of his knowledge of precisely what environment changing is necessary.

When design decisions are hidden within modules, the pieces of text inserted by
macros from a given source module often communicate by means of variables that the
macros have in common but that are not accessible in the surrounding and intervening
text where they are inserted by macro expansion. In other words, the macro text must
be compiled in an environment that is entirely disjoint from that of the surrounding code
but identical to that used in other (possibly quite remote) parts of the program. As dis-
cussed in the foregoing, current programming languages do not permit this.

5. AN ENVIRONMENT CHANGING FACILITY

To provide a facility with which pieces of code from completely separate write-time
environments are executed without complete changes of run-time environments, the com-
piler must be capable of transferring between environments at compile time while pro-
ducing code that appears to have been compiled from statements in a single larger environ-
ment. Run-time environment changes can be limited to those necessitated by the avail-
ability of addressing registers,

We propose a relatively direct approach. An environment may be defined by sur-
rounding a group of declarations with a “startenvi’” statement and an “endenvi’ statement,
where a “startenvi” or “endenvi” statement consists of the keyword followed by the name
and a semicolon. Variables declared in an environment are local to that environment un-
less declared ““accessible”. Environments may be declared within environments, and envi-
ronment names are local to the environment in which they are declared. The outermost
set of environment names is known everywhere unless suppressed by reuse of the name.
The order in which environment names appear within the description of an environment
is irrelevant. The keywords “enter ” and “leave > followed by an environment name
cause changes of environment.

The “enter ** statement invokes the declarations defined within the named environ-
ment. The “leave ” statement cancels the last “enter *, restoring the previocus environ-
ment. Each “enter ” statement must have a matching “leave ” statement. It is important
to note that environment changes may be found anywhere: in the middle of statements,

in the middle of arithmetic expressions, in the middle of declarations, etc.

PARNAS, SHORE, AND ELLIOTT

Because we have ne experience in the use of this simple syniax proposal, we include
it not as a specific language design, but as an illustration. When the facility is incorporated
in a full language, an appropriate notation can be found that is consisient with the rest of
the language.

We are not proposing that higher level languages or sysiem implementation languages
provide the unrestricted access rights available in assembler languages. On the contrary,
we feel that the restriction of access is essential to controlling the structure of programs.
We believe, however, that the restrictions in current languages are the wrong restrictions.
They are so strong that they force the use of global variables with the result that access-
right restrictions are too weak. The proposed environment-changing facility will reduce
the need for global variables {Ref, 4).

7. RELATION TO THE PROBLEM OF MACROS

The proposed environment-changing facility can be used to solve the problems of
maecros previously discussed. In simplistic terms, we hope to gain efficiency by replacing
procedure calls with macro calls, and to provide the capability of compiling the names of
variables appearing in text produced by a macro in the environment containing the macro

- definition and not in the environment of the macro call. This is not supported in lan-

suares in which, onee 3 macrvo sxnansinn 18 nroduced, the compiler forgeis that it was

GRS 111 iiiNiiy VIALT G MAariS LR prGlRAcrRis iz 2 AR MDD LIRS TUL R TUYe ViR i
= daac =3 H)i I s t ol

not part of the original text. Using the concept of explicit environment transfer we can
surround any macro-produced text with an “enter ” and corresponding “leave ” so that
the compiler will automatically change environments. Further, parameters passed to a
macro can be returned and subsequently interpreted in the environment of the caller who
passed them. This will allow variable names in the maecro environment and actual param-
eters to conflict without any problems. Conflicting names no longer conflict!

The frequent module changes that result from information-hiding technigues can
lead to frustrating inefficiencies if an initial call leads finally to somnething relatively simple
like an array reference. In such situations, the environmeni-switching facility that we have
proposed wouid be particularly useful.

Consider a message-processing system in which, as part of the processing involved in
one work assignment, it is necessary {o place on a stack message identifiers called “date

time grouns”’, This function ig nerformed hy the followineg cade that annears within o
----- _groups I8 IUNCIIeH 18 poriormed DY e IoLowing CoGe Lhal appears wiuiin a

work assignment called module A:

NRL REPORT 7847

integer k;

-

push{date__time_ group(k));

.

The form in which a “date_time_group” is stored or computed is hidden from mod-
ule A in module B. The writer of module B decides to place messages into a large array
called “messages™ and to service requests for parts of the message by using macros that

return appropriate array references. The following code appears in module B:

startenvi Y; integer array messages[1000,1000];

accessible macro date__time_ group{m);

string m;

return with ‘enter Y messages [300,20+ leave Y’ m ‘enter Y] leave Y7;

endenvi Y,

The stack is maintained by yet a third module. The following code appears in module C:

startenvi X,

integer array stack [1:1000];

integer i;

accessible macro reset; return with ‘enter X i:=0 leave X';

= —)

accessible macro depth; return with ‘enter X i leave X’;

accessible macro val; return with ‘enter X stack [i] leave X’;

accessible macro pop; return with ‘enter X i:=i-1 leave X’;

accessible macro push (it); string it;

return with ‘enter X i:=i+1; stack [i] :=leave X’ it:

endenvi X;

5
e ———

PARNAS, SHORE, AND ELLIOTT

By invocation of the macros “push” and “date_time_group”™ the “push™ statement
becomes

-41
m

nier

]
i

o]

leave Y k enter Y} leave Y:

or X i:=i+1; stack [i]:= leave

which ¢an fhen be compiled into efficient code that refers to variables defined in all three
modules.

9. AN IMPORTANT UUNSOLVED PROBLEM

TToin ~f +hn vmumen v A mmrrivoine nwd ade s o LN PR P TRy e
UBE DT e FFAAFPODIRE CLIV FoiHimenedna .l 1% G\a.l.l.lblb'b WLLL yj.uuut_,l: ITON & SinagLuied

representation a program representation Wlth no apparent structure. We consider this
completely acceptable only so long as human beings need never study the resulting un-
striuctured program. Whatever structured programming is, its value comes when humans
process programs, not when the machines process them. However, run-time errors will
force the programmer to study the unstructured program representation resulting from the
macro expansions. To solve this problem one must {a) require that every program follow
a relatively rigid procedure for handling errors and (b} keep records about the expansion

so that when an error is found, it can be associated with the proper higher level con-

nh-un-!»a [rrnwlra ahant tha frodk neadis o nrranwacl DaF & hué Ixné—!q rerexhs
CuS. SUIME TEMSYRS aooul hne IOsS PiUUICliI H8vVe appTaicu il nel, o, Ou H S

lems require considerable further study. The authors ask communication from those who
have suggestions or experience with either problem.

10. ACKNOWLEDGMENTS

We are happy lo acknowledge the many useful comments of Dr. James Miller of
Intermetrics, Inc. during discussions of the appiicability of the concepts discussed in this

cmmanmts b Al AU A e meann nom Fam s Tmwien e AT AL Y BET cemee e remm b ais) e TeAafanan

paper 1o the C5-4 progiamiming langiage u\.m. 6). We are also giam:;ui io Professor
Dr. H. J. Hoffamann of the Technische Hochscule Darmstadt for insightful comments on
an early version of this document.

)

NRL REPORT 7847
REFERENCES

om an Experiment in Software Engineering,” Proc.

fr
BIDQ e A1 »»n AR ANnwe 1407760
&L LK p2 Ula 'IJ.’ lJ. Ll INVUY. L J 1L,

D. L. Parnas, “Some Conclusions
A

Toninnd Noavmenesd e f
GLl SULIV LAJLILPFUL. WAFILIL. b

ot
[~

T T Do 66 Al et A b TTol S TR neee oo Qoo Iod RS T Y
. L. rarmnas, uvn uie UIIEIIA W DE Useu 1IN LeCOmposing oysSLEems mu) viouaules,

Commun. ACM vol. 15, No. 12, 1053-1058 Dec. 1972.

D. L. Parnas, “A Technique for Software Mndule Specification With Examples,”
Commun. ACM vol. 15, No. 5, 330-336 May 1972

W. A. Wulf, and M. Shaw, “Global Variable Considered Harmful,”” SIGPLAN Notices
vol. 8, No. 2 (Feb. 1973).

D. L. Parnas, “Response to Detected Errors in Well-Structured Programs,” Carnegie-
Mellon University Technical Report, July 1972.

d. S. Miller, C. M. Mikkelsen, J. R. Nestor, B. M. Brosgol, J. T. Pepe, and R. Fourer,

'CS-4 Language Reference Manual and Operating System Interface, Contract

N00123-72-C-1177, NELC, San Diego, Dec. 1973,

-

